Classification (ML training)
Train model to classify spectral data into classes
Optimizing metrics
Metrics | Description | Look for |
---|---|---|
Micro-Accuracy | Micro-average Accuracy aggregates the contributions of all classes to compute the average metric. It is the fraction of instances predicted correctly. The micro-average does not take class membership into account. Basically, every sample-class pair contributes equally to the accuracy metric. | The closer to 1.00, the better. In a multi-class classification task, micro-accuracy is preferable over macro-accuracy if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes). |
Macro-Accuracy | Macro-average Accuracy is the average accuracy at the class level. The accuracy for each class is computed and the macro-accuracy is the average of these accuracies. Basically, every class contributes equally to the accuracy metric. Minority classes are given equal weight as the larger classes. The macro-average metric gives the same weight to each class, no matter how many instances from that class the dataset contains. | The closer to 1.00, the better. It computes the metric independently for each class and then takes the average (hence treating all classes equally) |
Log-loss | Logarithmic loss measures the performance of a classification model where the prediction input is a probability value between 0.00 and 1.00. Log-loss increases as the predicted probability diverges from the actual label. | The closer to 0.00, the better. A perfect model would have a log-loss of 0.00. The goal of our machine learning models is to minimize this value. |
Log-Loss Reduction | Logarithmic loss reduction can be interpreted as the advantage of the classifier over a random prediction. | Ranges from -∞ and 1.00, where 1.00 is perfect predictions and 0.00 indicates mean predictions. For example, if the value equals 0.20, it can be interpreted as "the probability of a correct prediction is 20% better than random guessing" |